การหาพื้นที่ของรูปสามเหลี่ยม

Published กุมภาพันธ์ 27, 2012 by aunchan

การคำนวณพื้นที่ของรูปสามเหลี่ยมเป็นปัญหาพื้นฐานที่มักจะพบในสถานการณ์ที่แตกต่างกัน สูตรที่ง่ายและเป็นที่รู้จักมากที่สุดคือ

S=\frac{1}{2}bh

เมื่อ S หมายถึงพื้นที่ b คือความยาวของฐาน และ h คือความสูงหรือส่วนสูงของรูปสามเหลี่ยม คำว่าฐานในที่นี้สามารถหมายถึงด้านในด้านหนึ่งของรูปสามเหลี่ยม และส่วนสูงคือระยะที่วัดจากมุมที่อยู่ตรงข้ามด้านนั้นตั้งฉากไปยังฐาน

ถึงแม้ว่าสูตรนี้จะง่าย แต่ก็ใช้ประโยชน์ได้เฉพาะเมื่อสามารถหาความสูงของรูปสามเหลี่ยมได้โดยง่าย ตัวอย่างเช่นการรังวัดที่ดินที่มีลักษณะเป็นรูปสามเหลี่ยม จะวัดความยาวของด้านทั้งสามแล้วสามารถคำนวณหาพื้นที่ได้โดยไม่ต้องวัดส่วนสูงเป็นต้น วิธีการที่หลากหลายถูกใช้ในทางปฏิบัติ ขึ้นอยู่กับว่าเรารู้อะไรเกี่ยวกับรูปสามเหลี่ยมบ้าง วิธีต่อไปนี้เป็นสูตรหาพื้นที่ของรูปสามเหลี่ยมที่ใช้กันบ่อยๆ [4]

[แก้] ใช้เวกเตอร์

พื้นที่ของรูปสี่เหลี่ยมด้านขนานสามารถคำนวณได้ด้วยเวกเตอร์ กำหนดให้ AB และ AC เป็นเวกเตอร์ที่ชี้จาก A ไป B และ A ไป C ตามลำดับ พื้นที่ของรูปสี่เหลี่ยมด้านขนาน ABCD คือ |{AB}\times{AC}| ซึ่งเป็นขนาดของผลคูณไขว้ระหว่างเวกเตอร์ AB กับ AC และ |{AB}\times{AC}| มีค่าเท่ากับ |{h}\times{AC}| เมื่อ h แทนส่วนสูงที่เป็นเวกเตอร์

พื้นที่ของรูปสามเหลี่ยม ABC เป็นครึ่งหนึ่งของพื้นที่ของรูปสี่เหลี่ยมด้านขนานรูปนี้ หรือ S = \frac{1}{2}|{AB}\times{AC}|

พื้นที่ของรูปสามเหลี่ยม ABC ก็ยังสามารถเขียนได้ด้วยรูปแบบของผลคูณจุดดังนี้

\frac{1}{2} \sqrt{(\mathbf{AB} \cdot \mathbf{AB})(\mathbf{AC} \cdot \mathbf{AC}) -(\mathbf{AB} \cdot \mathbf{AC})^2} =\frac{1}{2} \sqrt{ |\mathbf{AB}|^2 |\mathbf{AC}|^2 -(\mathbf{AB} \cdot \mathbf{AC})^2}\,

ใช้ตรีโกณมิติหาส่วนสูง h

[แก้] ใช้ตรีโกณมิติ

ส่วนสูงของรูปสามเหลี่ยมหาได้ด้วยตรีโกณมิติ จากรูปทางซ้าย ส่วนสูงจะเท่ากับ h = a sin γ นำไปแทนในสูตร S = ½bh ที่ได้จากข้างต้น พื้นที่ของรูปสามเหลี่ยมจึงแสดงได้เป็น

S = \frac{1}{2}ab\sin \gamma = \frac{1}{2}bc\sin \alpha  = \frac{1}{2}ca\sin \beta

นอกจากนั้น เมื่อ sin α = sin (π – α) = sin (β + γ) และเป็นเช่นนี้เหมือนกันกับอีกสองมุมที่เหลือ จะได้สูตร

S = \frac{1}{2}ab\sin (\alpha+\beta) = \frac{1}{2}bc\sin (\beta+\gamma) = \frac{1}{2}ca\sin (\gamma+\alpha)

[แก้] ใช้พิกัด

ถ้าจุดยอด A อยู่ที่จุดกำเนิด (0, 0) ในระบบพิกัดคาร์ทีเซียน และกำหนดให้พิกัดของอีกสองจุดยอดอยู่ที่ B = (xB,yB),C = (xC,yC) แล้วพื้นที่ S จะคำนวณได้จาก ½ เท่าของค่าสัมบูรณ์ของดีเทอร์มิแนนต์

S=\frac{1}{2}\left|\det\begin{pmatrix}x_B & x_C \\ y_B & y_C \end{pmatrix}\right| = \frac{1}{2}|x_B y_C - x_C y_B|

สำหรับจุดยอดสามจุดใดๆ สมการคือ

S=\frac{1}{2} \left| \det\begin{pmatrix}x_A & x_B & x_C \\  y_A & y_B & y_C \\ 1 & 1 & 1\end{pmatrix} \right| = \frac{1}{2} \big| x_A y_C - x_A y_B + x_B y_A - x_B y_C + x_C y_B - x_C y_A \big|
S=\frac{1}{2} \big| (x_C - x_A) (y_B - y_A) - (x_B - x_A) (y_C - y_A) \big|

ในสามมิติ พื้นที่ของรูปสามเหลี่ยม A = (xA,yA,zA),B = (xB,yB,zB),C = (xC,yC,zC) คือผลบวกพีทาโกรัสของพื้นที่ของรูปสามเหลี่ยมที่ฉายไปบนระนาบพื้นฐาน (x = 0,y = 0,z = 0)

S=\frac{1}{2} \sqrt{ \left ( \det\begin{pmatrix} x_A & x_B & x_C \\ y_A & y_B & y_C \\ 1 & 1 & 1 \end{pmatrix} \right) ^2 +<br />
\left ( \det\begin{pmatrix} y_A & y_B & y_C \\ z_A & z_B & z_C \\ 1 & 1 & 1 \end{pmatrix} \right) ^2 +<br />
\left ( \det\begin{pmatrix} z_A & z_B & z_C \\ x_A & x_B & x_C \\ 1 & 1 & 1 \end{pmatrix} \right) ^2 } ” /></dd>
</dl>
<h3>[<a title=แก้] ใช้สูตรของเฮรอน

อีกวิธีที่ใช้คำนวณ S ได้คือใช้สูตรของเฮรอน

S = \sqrt{s (s-a) (s-b) (s-c)}

เมื่อ s = (a + b + c) / 2 คือครึ่งหนึ่งของเส้นรอบรูปของรูปสามเหลี่ยม

นอกจากนี้ก็มีสูตรอื่นที่เทียบเคียงกับสูตรของเฮรอน

 S = \frac{1}{4} \sqrt{(a^2+b^2+c^2) ^2-2 (a^4+b^4+c^4)}
 S = \frac{1}{4} \sqrt{2 (a^2b^2+a^2c^2+b^2c^2) - (a^4+b^4+c^4)}
 S = \frac{1}{4} \sqrt{(a+b-c) (a-b+c) (-a+b+c) (a+b+c)}

[แก้] การคำนวณด้านและมุม

โดยทั่วไปแล้ว มีวิธีการที่ได้รับการยอมรับหลากหลายวิธีเพื่อคำนวณความยาวของด้านหรือขนาดของมุม ในขณะที่วิธีการเฉพาะอย่างสามารถใช้ได้ดีกับค่าต่างๆ ของรูปสามเหลี่ยมมุมฉาก ซึ่งวิธีอื่นอาจต้องอยู่ในสถานการณ์ที่ซับซ้อนมากกว่า

[แก้] อัตราส่วนตรีโกณมิติในรูปสามเหลี่ยมมุมฉาก

รูปสามเหลี่ยมมุมฉากรูปหนึ่ง

ดูบทความหลักที่ ฟังก์ชันตรีโกณมิติ

ในรูปสามเหลี่ยมมุมฉาก อัตราส่วนตรีโกณมิติของไซน์ โคไซน์ และแทนเจนต์สามารถใช้คำนวณหามุมที่ไม่ทราบขนาด หรือความยาวของด้านที่ไม่ทราบได้ ด้านต่างๆ ของรูปสามเหลี่ยมมีดังต่อไปนี้

  • ด้านตรงข้ามมุมฉาก คือด้านที่อยู่ตรงข้ามกับมุมฉาก หรือนิยามเป็นด้านที่ยาวที่สุดของรูปสามเหลี่ยมมุมฉากก็ได้ ตามรูปคือด้าน h
  • ด้านตรงข้ามมุม คือด้านที่อยู่ตรงข้ามกับมุมที่เราสนใจ ตามรูปคือ a
  • ด้านประชิดมุม คือด้านที่อยู่ติดต่อกันบนมุมฉากกับมุมที่เราสนใจ ตามรูปคือ b

[แก้] ไซน์ โคไซน์ และแทนเจนต์

ไซน์ของมุม คืออัตราส่วนระหว่างความยาวของด้านตรงข้ามมุม ต่อความยาวของด้านตรงข้ามมุมฉาก

\sin A = \frac {\textrm{opposite}} {\textrm{hypotenuse}} = \frac {a} {h}

โปรดสังเกตว่าอัตราส่วนนี้ไม่ได้ขึ้นอยู่กับรูปสามเหลี่ยมมุมฉากเฉพาะรูปใดรูปหนึ่ง แค่เรามีมุมที่สนใจ A บนรูปสามเหลี่ยมนั้นก็เพียงพอ

โคไซน์ของมุม คืออัตราส่วนระหว่างความยาวของด้านประชิดมุม ต่อความยาวของด้านตรงข้ามมุมฉาก

\cos A = \frac {\textrm{adjacent}} {\textrm{hypotenuse}} = \frac {b} {h}

แทนเจนต์ของมุม คืออัตราส่วนระหว่างความยาวของด้านตรงข้ามมุม ต่อความยาวของด้านประชิดมุม

\tan A = \frac {\textrm{opposite}} {\textrm{adjacent}} = \frac {a} {b}

เราสามารถท่องว่า “ข้ามฉาก ชิดฉาก ข้ามชิด” สำหรับการจำอัตราส่วนเหล่านี้อย่างย่อ

[แก้] ฟังก์ชันผกผัน

ฟังก์ชันตรีโกณมิติผกผันสามารถใช้คำนวณมุมภายในของรูปสามเหลี่ยมมุมฉาก เมื่อเราทราบความยาวของด้านสองด้านใดๆ

อาร์กไซน์ ใช้สำหรับคำนวณขนาดของมุมที่สนใจ จากความยาวของด้านตรงข้ามมุม กับความยาวของด้านตรงข้ามมุมฉาก

\theta = \arcsin \left( \frac{\text{opposite}}{\text{hypotenuse}} \right)

อาร์กโคไซน์ ใช้สำหรับคำนวณขนาดของมุมที่สนใจ จากความยาวของด้านประชิดมุม กับความยาวของด้านตรงข้ามมุมฉาก

\theta = \arccos \left( \frac{\text{adjacent}}{\text{hypotenuse}} \right)

อาร์กแทนเจนต์ ใช้สำหรับคำนวณขนาดของมุมที่สนใจ จากความยาวของด้านตรงข้ามมุม กับความยาวของด้านประชิดมุม

\theta = \arctan \left( \frac{\text{opposite}}{\text{adjacent}} \right)

[แก้] กฎของไซน์และโคไซน์

รูปสามเหลี่ยมที่มีด้าน a, b, c และมีมุม α, β, γ ตามลำดับ

ดูบทความหลักที่ กฎของไซน์ และ กฎของโคไซน์

กฎของไซน์ (law of sine) หรือกฎไซน์ (sine rule) [5] ระบุไว้ว่าอัตราส่วนของความยาวของด้าน a ที่สมนัยกับมุม α (มุมตรงข้าม) จะเท่ากับอัตราส่วนของความยาวของด้าน b ที่สมนัยกับมุม β ดังนี้

\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}

กฎของโคไซน์ (law of cosine) หรือกฎโคไซน์ (cosine rule) เป็นการเชื่อมโยงความสัมพันธ์ระหว่างด้านหนึ่งของรูปสามเหลี่ยมที่ไม่ทราบความยาว ไปยังด้านที่เหลือและมุมที่อยู่ตรงข้าม จากรูปทางซ้ายมือ สมมติว่าเราทราบความยาวของด้าน a และ b และทราบขนาดของมุมตรงข้าม γ ความยาวของด้าน c สามารถคำนวณจากสูตรต่อไปนี้

c^2\ = a^2 + b^2 - 2ab\cos(\gamma) \implies b^2\ = a^2 + c^2 - 2ac\cos(\beta) \implies a^2\ = b^2 + c^2 - 2bc\cos(\alpha)

[แก้] รูปสามเหลี่ยมที่ไม่อยู่บนระนาบ

รูปสามเหลี่ยมที่ไม่อยู่บนระนาบ หมายถึงรูปสามเหลี่ยมที่ไม่ได้ถูกวาดขึ้นบนพื้นผิวที่แบนราบ ตัวอย่างรูปสามเหลี่ยมที่ไม่อยู่บนระนาบเช่น รูปสามเหลี่ยมบนทรงกลมในเรขาคณิตทรงกลม และรูปสามเหลี่ยมเชิงไฮเพอร์โบลาในเรขาคณิตเชิงไฮเพอร์โบลา ซึ่งไม่ได้เป็นส่วนหนึ่งของเรขาคณิตแบบยุคลิด

ในขณะที่รูปสามเหลี่ยมธรรมดา (สองมิติ) มุมภายในรูปสามเหลี่ยมจะรวมกันได้ 180° แต่รูปสามเหลี่ยมที่ไม่อยู่บนระนาบมุมภายในอาจรวมกันได้มากกว่าหรือน้อยกว่านั้น บนพื้นผิวที่มีความโค้งเป็นลบ (บุ๋มลงไป) จะบวกกันได้น้อยกว่า 180° และบนพื้นผิวที่มีความโค้งเป็นบวก (นูนขึ้นมา) จะบวกกันได้มากกว่า 180° นั่นหมายความว่า ถ้าเราวาดรูปสามเหลี่ยมขนาดใหญ่มากบนพื้นผิวโลก มุมภายในจะรวมกันได้

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

ติดตาม

Get every new post delivered to your Inbox.

%d bloggers like this: